Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

نویسندگان

  • Yan Li
  • Bing Li
  • Cui-Ping Wang
  • Jun-Zhao Fan
  • Hong-Wen Sun
چکیده

Trichloroethylene (TCE) is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26×10⁷ cell/mL), initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE)/mg (biomass) and 5.1 μg (TCE)/mg (phenol), respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%). When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively). This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha

The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...

متن کامل

Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha

The present paper has examined the degrading ability of phenol-oxidizing bacterium, Ralstonia eutropha, for biological removal of methylene blue (MB) from aqueous solutions under aerobic conditions. Results show that MB has been extensively eliminated as a co-metabolism in the presence of supplementary carbon (glucose) and nitrogen (yeast extract and peptone) sources and the experimental observ...

متن کامل

Degradation of Trichloroethylene by Bacteria Isolated from Activated Sludge

Trichloroethylene (TCE) is one of the most serious chlorinated pollutants of some groundwater of many industrial countries so that a possibility of its microbial degradation is an aim of many research and engineer teams. Natural strain C. testosteroni RF2 and its derivative strain VM obtained by mutagenesis were tested for their capability to trichloroethylene (TCE) degradation. Both strains we...

متن کامل

Phenol Biodegradation Kinetics in the Presence of Supplimentary Substrate

Biodegradation of phenol in the presence of glucose as a supplementary substrate was investigated with mixed microbial consortium isolated from waste effluent of coke-steel factory. Batch experiments were carried out at room temperature and pH value of 7. Initial phenol and glucose concentrations were in the range of 25-1000 mg/l and 500-3000 mg/l, respectively. In a dual substrates system the ...

متن کامل

In situ bioremediation of chlorinated solvents.

Chlorinated solvents and their natural transformation products are the most frequently observed groundwater contaminants in the United States. In situ bioremediation using anaerobic or aerobic co-metabolic processes is a promising means of cleaning up contaminated aquifers. Studies show that under natural conditions trichloroethylene can be anaerobically degraded to dichloroethylene, vinyl chlo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014